On symmetric and quasi-symmetric designs with the symmetric difference property and their codes
نویسندگان
چکیده
منابع مشابه
Binary codes and quasi-symmetric designs
obtain a new for the of a-(u, A) design the block intersection designs are eliminated by an ad hoc coding theoretic argument. A 2-(v, k, A) design 93 is said to be quasi-symmetric if there are two block intersection sizes s1 and s2. The parameters of the complementary design !3* are related to the parameters of 93 as follows: Here Ai denotes the number of blocks through a given i points (and A ...
متن کاملOn quasi-symmetric designs with intersection difference three
In a recent paper, Pawale [22] investigated quasi-symmetric 2-(v, k, λ) designs with intersection numbers x > 0 and y = x+ 2 with λ > 1 and showed that under these conditions either λ = x + 1 or λ = x + 2, or D is a design with parameters given in the form of an explicit table, or the complement of one of these designs. In this paper, quasi-symmetric designs with y−x = 3 are investigated. It is...
متن کاملDesigns with the Symmetric Difference Property on 64 Points and Their Groups
The automorphism groups of the symmetric 2-(64, 28, 12) designs with the symmetric difference property (SDP), as well as the groups of their derived and residual designs, are computed. The symmetric SDP designs all have transitive automorphism groups. In addition, they all admit transitive regular subgroups, or equivalently, (64, 28, 12) difference sets. These results are used for the enumerati...
متن کاملA note on quasi-symmetric designs
A quasi-symmetric design is a (v, k, λ) design with two intersection numbers x, y where 0 ≤ x < y < k. We show that for fixed x, y, λ with x > 1, λ > 1, y = λ and λ (4xy + ((y − x) − 2x− 2y + 1)λ) a perfect square of a positive integer, there exist finitely many quasi-symmetric designs. We rule out the possibilities of quasi-symmetric designs corresponding to y = x + 3 and (λ, x) = (9, 2), (8, ...
متن کاملMaximal arcs and quasi-symmetric designs
In 2001, Blokhuis and Haemers gave an interesting construction for quasisymmetric designs with parameters 2-(q, q(q − 1)/2, q(q − q − 2)/4) and block intersection numbers q(q − 2)/4 and q(q − 1)/4 (where q ≥ 4 is a power of 2), which uses maximal arcs in the affine plane AG(2, q) and produces examples embedded into affine 3-space AG(3, q). We consider this construction in more detail and in a m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 1992
ISSN: 0097-3165
DOI: 10.1016/0097-3165(92)90097-e